The PGG System—User Manual

Peter Thiemann*
Universitat Freiburg
thiemann@informatik.uni-freiburg.de

December 30, 2008

1 Introduction

The PGG system is a partial evaluation system for the full Scheme language
as defined in the R5RS report [19]. It has the following features

o offline partial evaluation using the cogen approach;
e correct specialization of imperative code;

e side effects performed at specialization time;

e modular specialization;

e 1o restrictions on primitives and static inputs (they are not restricted
to have first-order types);

e handles eval, apply, call-with-values, and control operators cor-
rectly;

e flexible control of memoization;

e language extensions (user-defined algebraic datatypes, make-cell, cell-set!,
cell-ref, cell-eq?);

e representation analysis;
e fast specialization (the system produces generating extensions);

e multi-level specialization.

*Copyright © Peter Thiemann, 1998-2008

The system does not have a post-processor. This manual does not contain
explanatory material about offline partial evaluation. Section 7.1 gives some
pointers to relevant literature.

Contents

1 Introduction

2 Installation

3 First Steps

3.1
3.2
3.3
3.4
3.5
3.6

Power
Lambda interpreter
Cyclic o e
Guide to the other examples
Specialization of modular programs
Specialization with respect to indexed data

4 Reference manual

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9

4.10

4.11
4.12

Notation
Typesystem
Binding-time analysis Lo Lo oo
Primitive operations L o
Representation analysis oL,
Memoization
Special expressions
471 eval ...
472 apply
4.7.3 lambda-poly
Predefined operators
Directives
4.9.1 define-without-memoization
4.9.2 define-data
4.9.3 define-type
4.9.4 define-primitive oL o
4.9.5 defineememo
4.9.6 load e
4.9.7 begin
Commands e
4.10.1 Creating a generating extension
4.10.2 Running a generating extension
4.10.3 Continuing a specialization
4.10.4 Suspend a deferred specialization
4.10.5 Resurrect a deferred specialization
Settable options
Utilities o . o

5 Differences to Scheme

6 Reading a generating extension

12
14
17
18

22
22
22
22
23
23
24
24
24
25
25
25
26
26
26
27
27
28
29
29
29
29
30
32
32
32
32
34

34

34

7 Technical background 36
7.1 Partial evaluation in general
7.2 Directly related publications 0 L. 37
7.3 Structure of the implementation

8 Known problems 38

2 Installation

To use the system, you first have to install the Scheme48 system [20], which
is available from http://www.s48.0rg/. The current version 1.8 is required
to run PGG.

Once you have installed Scheme48, unpack the distribution file by

kailua> mkdir pgg-1.4
kailua> cd pgg-1.4
kailua> zcat (path-where-you-downloaded)/pgg-1.4.tar.gz | tar xvf -

(with kailua> being the shell’s prompt) This creates the directory pgg-1.4
in the current directory.

Next, you should build yourself an image file of the system, to speed up
loading later on. To do this type:

kailua> cd pgg-1.4
kailua> make
(echo ",bench on"; \
echo ",config,load genext-packages.scm pgg-packages.scm"; \
for package in pgg-residual pgg ; do \
echo ",load-package $package"; \
done ; \
echo ",open pgg signals"; \
echo ",open auxiliary pgg-library pgg-specialize pp"; \
echo ",collect"; \
echo ",dump pgg.image \"(PGG-1.2 made by $LOGNAME ‘date‘)\""; \
echo ",exit") \
| scheme48 -h 10000000
Welcome to Scheme 48 1.8 (made by thiemann on Fri Aug 8 16:50:56 CEST 2008).
Copyright (c) 1993-2008 by Richard Kelsey and Jonathan Rees.
Please report bugs to scheme-48-bugs@s48.org.
Type ,7 (comma question-mark) for help.
> will compile some calls in line
> > > > > > Before: 2527559 words free in semispace
After: 4203309 words free in semispace
> Writing pgg.image
>
kailua>

Next time you want to use PGG, type

kailua> scheme48 -h 6000000 -i pgg.image

to save the time spent with loading and compiling the system. You might
want to put the above into a shell script. The -h parameter determines
the heapsize which might have to be increased when dealing with larger
programs. The pgg.image file may be moved to an arbitrary location, it is
independent of the directory containing the PGG distribution.

3 First Steps

This section goes through a few examples of using PGG. It assumes that
the system has been started in the pgg-1.1 directory. The subdirectory
example contains the sources of all examples.

3.1 Power

One of the simplest examples is the exponentiation function power. It resides
in file examples/power.scm.

(define (power x n)
(if (= 0 n)
1
(* x (power x (- n 1)))))

To specialize it, PGG must know three things
e where to find the source program;
e the name of the entry point;

e the binding times of the parameters of the entry point.

The latter two are specified using a binding-time skeleton, i.e., a list that
contains the entry point and the binding times of the parameters. In the
example, ’> (power 1 0) is a sensible binding-time skeleton. It specifies the
entry point power and the binding times 1 (dynamic) for the base x and 0
(static) for the exponent n.

> (cogen-driver (list "examples/power.scm") ’(power 1 0))
bta-run

bta-solve

bta-solve done

>((define (specialize-$goal x2)

>

PGG’s answer is the corresponding generating extension. Pretty printing
yields:

(define (specialize-$goal x2)
(specialize $goal ’(power 1 0) (list ’x1 x2)))
(define (power x_1 n_1)
(if (Lop 0 = 0 n_1)
(_L1ift 0 1 1)
(Lop 1 * x_1 (power x_1 (_op O - n_1 1)))))
(define ($goal x_1 n_1)
(power x_1 n_1))

To use the generating extension, we need to compile it. There are several
ways to do that:

> (define genext
(cogen-driver (list "examples/power.scm") ’(power 1 0)))
bta-run
bta-solve
bta-solve done
; no values returned
> (load-program genext)
; no values returned
>

Alternatively, we can first save the generating extension to a file and then
load and compile the file.

> (writelpp genext "/tmp/power-10.scm")
#{Unspecific}

> (load "/tmp/power-10.scm")
/tmp/power-10.scm

; no values returned

>

The latter approach is recommended if the source program does not yet
specialize satisfactorily. In this case, inspection of the generating extension
reveals possible problems. For this reason, the syntax of the generating
extension is as close as possible to binding-time annotated Scheme.

Now that we have loaded the generating extension, we are ready to
specialize. This is facilitated by the specialize-$goal function provided
as part of the generating extension.

> (specialize-$goal 0)

> (power-2 x1)

> (get-residual-program)
>((define (power-2 x-3) 1))
>

The specializer responds with the call template for the residual program,
> (power-2 x1), indicating that power-2 is the entry point of the resid-
ual program and that it takes one parameter. The specializer puts the
residual program in a variable whose contents can be retrieved with the
get-residual-program procedure, for further examination, compilation,
or to save it to a file.

Here is a more interesting run, specializing power for n=4.

> (specialize-$goal 4)
> (power-2 x1)
> (p (get-residual-program))
((define (power-2 x-3)
(let* ((mlet-11 (* x-3 1))
(mlet-9 (* x-3 mlet-11))
(mlet-7 (* x-3 mlet-9)))
(* x-3 mlet-7))))

(The function p invokes the pretty printer.)

This residual program looks more complicated than we expected. The
reason is that PGG—by default—avoids to duplicate or to reorder residual
code. This feature makes it easy to have impure (side-effecting) primitives.
In the present case, we know that * is pure and that no code duplication
arises from it. An appropriate declaration,

(define-primitive * - pure)

as provided in the file "examples/pure-arith.scm", instructs PGG that *
is indeed a pure function. Now we can say

> (define genext
(cogen-driver (list "examples/power.scm"
"examples/pure-arith.scm") ’(power 1 0)))

> (load-program genext)
; no values returned
> (specialize-$goal 4)

and PGG generates the expected code:

(define (power-2 x-3)
(* x-3 (% x-3 (* x-3 (* x-3 1)))))

A post-processor would have reduced the expression (* x-1 1) to x-1. This
example demonstrates that there is none. It is nevertheless possible to obtain
the same effect by slightly rewriting the source program. This is left as as
exercise.

3.2 Lambda interpreter

This section shows a classic example, an interpreter for an applied lambda
calculus with Scheme’s constants, a conditional, and primitive operations.
The input to the interpreter is a lambda expression, a list of free variables,
and a list of values of the free variables. The following grammar specifies
the concrete syntax of expressions.

E ::= X | (lambda (X) E) | (apply E E)
| ¢ | (if EEE) | (0 Ex)

This interpreter employs partially static data to represent the environment.
The environment is a list of pairs of variable name and value. The intention
is that the length of the list and all variable names are static, but the values
are dynamic. Traditionally!, the Scheme built-in lists cannot be used for
this, so we define a new algebraic datatype for this purpose.

(define-data my-list (my-nil) (my-cons my-car my-cdr))

This line declares the algebraic datatype my-1list with constructors my-nil
and my-cons (see 4.9.2). The elements of this datatype may be partially
static, i.e., the components may have a different (higher) binding time than
the structure itself. In addition, they can be memoized separately.

It is a little tedious to enter such an environment by hand, so we also
supply a function that transforms a static list of names and a dynamic list
of values into an environment. Finally, it calls the interpreter function int.

(define (main exp names values)
(let loop ((names names) (values values) (env (my-nil)))
(if (null? names)
(int exp env)
(loop (cdr names) (cdr values)
(my-cons (my-cons (car names) (car values)) env)))))

The interpreter has two local functions, int* and apply-prim. Int* eval-
uates a list of expressions to a list of values. Apply-prim takes a primitive
operator and a list of value and returns the result. The interesting part of
apply-prim is its use of eval. Eval’s argument op is static, whereas the
result of eval is dynamic.

(define (int exp env)
(let loop ((exp exp))
(define (int* exp*)
(let recur ((exp* exp*))

n partial evaluation, that is.

(if (null? expx*)
>0
(cons (loop (car exp*))
(recur (cdr exp*))))))
(define (apply-prim op args)
(apply (eval op (interaction-environment))

args))
(cond
((constant? exp)
exp)

((not (pair? exp))
(lookup exp env))
((eq? (car exp) ’IF)
(let ((test-exp (cadr exp))
(then-exp (caddr exp))
(else-exp (cadddr exp)))
(if (loop test-exp)
(loop then-exp)
(loop else-exp))))
((eq? (car exp) ’LAMBDA)
(lambda (y)
(int (caddr exp) (my-cons (my-cons (caadr exp) y) env))))
((eq? (car exp) ’APPLY)
((Loop (cadr exp))
(loop (caddr exp))))
(else
(apply-prim (car exp) (int* (cdr exp)))))))

All that’s missing are two auxiliary functions, constant? and lookup, that
indicate whether an expression denotes a constant and perform lookup in
the environment.

(define (constant? e)
(or (boolean? e)
(number? e)
(and (pair? e) (eq? (car e) ’QUOTE))))

(define (lookup v env)
(let loop ((env env))
(if (eq? v (my-car (my-car env)))
(my-cdr (my-car env))
(loop (my-cdr env)))))

As already mentioned, the idea is that the inputs exp and names are static
and that values is dynamic. So we start the binding-time analysis with

> (define genext

10

(cogen-driver (list "examples/int.scm") ’(main 0 O 1)))
bta-run
bta-solve
bta-solve done
; no values returned
>

To load this generating extension, we need to load the define-data opera-
tion from module pgg-residual.

> ,open pgg-residual
> (load-program genext)
> (specialize-$goal 5 ’())
> (main-2 x3)
> (p (get-residual-program))
((define (main-2 x-3) 5))
> (specialize-$goal ’(+ x y) ’(x y))
’ (main-2 x3)
> (p (get-residual-program))
((define (main-2 x-3)
(let* ((mlet-5 (cdr x-3))
(mlet-7 (car x-3))
(mlet-9 (cdr mlet-5))
(mlet-11 (car mlet-5)))
(+ mlet-7 mlet-11))))
> (specialize-$goal ’(lambda (x) (+ x y)) ’(y))
> (main-2 x3)
> (p (get-residual-program))
((define (main-2 x-3)
(define (loop-4 mlet-3)
(lambda (y_1-5)
(+ y_1-5 mlet-3)))
(let* ((mlet-5 (cdr x-3)) (mlet-7 (car x-3)))
(Loop-4 mlet-7))))
>

The examples demonstrate that the environment is specialized away. Only
the dynamic values survive and become parameters (this is called “arity
raising”). Furthermore, eval and apply have been specialized satisfactorily,
as demonstrated by the last two specializations: (+ mlet-7 mlet-11) and
(+ y_-1-5 mlet-3) is the corresponding residual code.

The auxiliary definition of loop-4 is introduced automatically by the
specializer to avoid a non-terminating specialization. In the example, there
is no danger of non-termination because the recursive calls only decompose
the source expression. Hence, it is safe to turn off memoization for the
function int by changing the first line of its definition to

11

(define-without-memoization (int exp env)

L)

After constructing a new generating extension, we obtain a simpler residual
program.

(define ($goal-1 values-1)
(let* ((mlet-2 (cdr values-1))
(mlet-3 (car values-1)))
(lambda (y_1-4) (+ y_1-4 mlet-3))))

3.3 Cyclic

This example demonstrates specialization of imperative programs.

(define-data my-list (my-nil) (my-cons my-car my-cdr))
(define (main d)
(let ((cycle (my-cons 1 (make-cell (my-nil)))))
(cell-set! (my-cdr cycle) cycle)
(zip d cycle)))
(define (zip d s)
(if (null? 4)
>0
(cons (cons (car d) (my-car s))
(zip (cdr d) (cell-ref (my-cdr s))))))

The list cycle is completely static, but the cdr of cycle contains a reference
to cycle itself. This cyclic list of ones is passed as an argument to the
function zip which zips it together with a dynamic list d. Unrolling the
dynamic list involves memoization, hence the specializer must memoize the
cyclic structure passed as an argument to zip to avoid infinite specialization.
Here is what happens.

> (define genext
(cogen-driver (list "examples/cyclic.scm") ’(main 1)))
bta-run
effect analysis: fixpointing done
bta-solve
bta-solve done
> (p genext)
((define-data my-list (my-nil) (my-cons my-car my-cdr))
(define (specialize-$goal)
(specialize $goal ’(main 1) (list ’x1)))
(define (main d_2)
(let ((cycle_1 (_ctor_memo O
(0 0

12

#f

my-cons
1
(_make-cell_memo O
3
0
(_ctor_memo 0O
O
#f

my-nil)))))
(_message!_memo O (_s_t_memo O my-cdr cycle_1) cell-set! cycle_1)
(zip d_2 cycle_1)))
(define (zip d_1 s_1)
(multi-memo 1 1 ’zip-2 zip-2 #f ’(1 0) (list d_1 s_1)))
(define (zip-2 d_1 s_1)
(_if 1
(_op 1 null? 4_1)
(L1ift 01 ()
(Lop 1
cons
(_op 1 cons (_op 1 car d_1) (_lift 0 1 (_s_t_memo O my-car s_1)))
(zip (_op 1 cdr d_1)
(_s_t_memo O cell-ref (_s_t_memo O my-cdr s_1))))))
(define ($goal d_2)
(main d_2)))
>

The function _ctor_memo constructs the memoized representation of a con-
structor. Its first argument is the binding time of the structure itself, its
second argument is the list of binding times of the components (all 0 in
this case). _make-cell memo constructs a memoized reference cell, the first
argument is the binding time of the address and the next argument 3 is
the unique label of the corresponding make-cell operation in the source
program. _s_t_memo accesses or tests memoized data objects, the implemen-
tation handles them all uniformly.

The operation _define-data serves to transfer the datatype definition
to the residual program.

To load this generating extension, we need to make the define-data
operation available.

> ,open pgg-residual

Load structure pgg-residual (y/n)? y
[pgg-residual

cogen-ctors.scm]

13

Newly accessible in user: (define-data)
> (load-program genext)
> (specialize-$goal)
> (main-2 x1)
> (p (get-residual-program))
((define (main-2 x-3)
(define (zip-4 x-3)
(let ((mlet-5 (null? x-3)))
(if mlet-5
>0
(let* ((mlet-11 (car x-3))
(mlet-9 (cons mlet-11 1))
(mlet-13 (cdr x-3))
(mlet-15 (zip-4 mlet-13)))
(cons mlet-9 mlet-15)))))
(zip-4 x-3)))

The cyclic structure vanishes on specialization. The construction of the pair
(x . 1) is implemented by (cons mlet-11 1).

3.4 Guide to the other examples
e cxamples/2lazy.scm a two-level interpreter for a lazy first-order lan-

guage, implements updatable closures using references.

> (define genext
(cogen-driver (list "examples/2lazy.scm") °’(lazy-2int 0 0 0 1)))
> (load-program genext)

The parameters of (lazy-2int prg goal xs* xd*) are

— prg the program;

— goal the entry point of prg (a symbol);

— xs* the static parameters;

— xd* the dynamic parameters.
The static parameters may include configuration variables of the form
(CV %) which refers to the ith dynamic parameter.

To perform specialization, we need to load some auxiliary functions
(load "examples/2lazy-support.scm")

It contains the example programs lazyl and lazy2. Example calls of
the specializer include

14

> (specialize $goal ’($goal 0 0 0 1) (list lazyl ’f ’(42) ’DYN))

> (specialize $goal ’($goal 0 0 0 1) (list lazyl ’f ’((CV 1)) ’DYN))

> (specialize $goal ’($goal 0 0 0 1) (list lazy2 ’f ’((CV 1) (CV 2) (CV 3)) ’DYN))
> (specialize $goal ’($goal 0 0 0 1) (list lazy2 ’f ’((CV 1) (CV 2) 13) ’DYN))

> (specialize $goal ’($goal 0 0 0 1) (list lazy2 ’f ’((CV 1) 7 11) ’DYN))

> (specialize $goal ’($goal 0 0 0 1) (list lazy2 ’f *(#t (CV 1) (CV 2)) ’DYN))

> (specialize $goal ’($goal 0 0 0 1) (list lazy2 ’f ’(#f (CV 1) (CV 2)) ’DYN))

> (specialize $goal ’($goal 0 0 0 1) (1list lazy2 ’f ’(#f (CV 1) 17) °DYN))

examples/app.scm contains the append function for lists.

examples/dotprod.scm compute the scalar product of three vectors.
This is an example for multi-level specialization.

> (define genext (cogen-driver (list "examples/dotprod.scm")
> (dotprod 0 1 2 3)))
> (load-program genext)
> (specialize-$goal 2)
’(multi-memo 2 2 ’dotprod-2 dotprod-2 #f ’(0 1 2) (list x2 x3 x4))

This answer indicates that the residual program is again a generating
extension, which can be loaded and specialized further. Let’s have a
look

> (p (get-residual-program))
((define (dotprod-2 x-7 x-5 x-3)
(let* ((mlet-15 (car x-7))
(mlet-17 (_op 1 car x-5))
(mlet-13 (_op 1 * (_1ift0 1 mlet-15) mlet-17))
(mlet-19 (_op 2 car x-3))
(mlet-11 (_op 2 * (_lift 1 1 mlet-13) mlet-19))
(mlet-21 (cdr x-7))
(mlet-23 (_op 1 cdr x-5))
(mlet-25 (_op 2 cdr x-3))
(mlet-33 (car mlet-21))
(mlet-35 (_op 1 car mlet-23))
(mlet-31 (_op 1 * (_1ift0 1 mlet-33) mlet-35))
(mlet-37 (_op 2 car mlet-25))
(mlet-29 (_op 2 * (_lift 1 1 mlet-31) mlet-37))
(mlet-39 (cdr mlet-21))
(mlet-41 (_op 1 cdr mlet-23))
(mlet-43 (_op 2 cdr mlet-25))
(mlet-27 (_op 2 + mlet-29 (_1ift0 2 0))))
(_op 2 + mlet-11 mlet-27))))

15

This time, we have to load the residual program to continue special-
izing. The answer from the previous specialization step tells us the
name dotprod-2 of the entry point.

> (load-program (get-residual-program))
> (specialize dotprod-2 ’(dotprod-2-1 0 1 2) ’((111 222) v2 v3))
’(multi-memo 1 1 ’dotprod-2-1 dotprod-2-1 #f °>(0 1) (list v2 v3))
> (load-program (get-residual-program))
> (specialize dotprod-2-1 ’(dotprod-2-1-1 0 1) ’((333 444) v3))
> (dotprod-2-1-1 v3)
> (p (get-residual-program))
((define (dotprod-2-1-1 v-3)
(let* ((mlet-5 (car v-3))
(mlet-7 (x 36963 mlet-5))
(mlet-9 (cdr v-3))
(mlet-11 (car mlet-9))
(mlet-13 (* 98568 mlet-11))
(mlet-15 (cdr mlet-9))
(mlet-17 (+ mlet-13 0)))
(+ mlet-7 mlet-17))))

This is the final specialized program after three steps.

e object a class of counter objects. A mini-example with state.

> (define genext (cogen-driver (list "examples/object.scm") ’(main)))
> (load-program genext)
> (specialize-$goal)

e pm Olivier Danvy’s pattern matcher [7]
> (define genext (cogen-driver (list "examples/pm.scm") ’(match 0 1)))

e unify imperative unification of terms where variables are implemented
by references.

(define genext (cogen-driver (list "examples/unify.scm") ’(main 0 1)))
(load-program genext)

(specialize-$goal ’(cst 555))

(specialize-$goal ’(var 555))

(specialize-$goal ’(bin (var 1) (var 1)))

(specialize-$goal ’(bin (var 1) (bin (cst 4711) (var 1))))

V V V V V V

16

3.5 Specialization of modular programs

As an advanced feature, it is possible to encapsulate the generating extension
in a module. We recap the example of the power function to illustrate it.
In addition to the usual parameters for cogen-driver we need to specify a
filename for the output.

> (cogen-driver (list "examples/power.scm") ’(power 1 0) "/tmp/powerl.scm")

bta-run

bta-solve

bta-solve done

>((define (power x_1 n_1) (if (_op O = 0 n_1) (_1ift 0 1 1) (_op 1 * x_1 (power x_1 (_op C
>

This command generates two files:

e /tmp/powerl.scm contains the code of the generating extension (pretty
printed) and

e /tmp/powerl.config.scm contains the declarations for the interface
and the structure of the generating extension. For the example, PGG
generates the following declarations:

(define-interface
powerl-interface
(export $goal))
(define-structure
powerl
powerl-interface
(open scheme signals define-data pgg-library)
(files powerl))

To use the generating extension from this module, we need to make Scheme48
aware of it.

> ,config,load /tmp/powerl.config.scm
/tmp/powerl.config.scm
>

Now the system can load and compile the module, just by referencing it
with its name.

> ,open powerl

Load structure powerl (y/n)? y
[define-data cogen-ctors.scm]
[powerl /tmp/powerl.scm]

>

17

Finally, we can specialize in the same way as before.

> (specialize $goal ’($goal 1 0) ’(x 0))
’ ($goal-1 x)

> (get-residual-program)

> ((define ($goal-1 x-1) 1))

>

Section 4.10.1 in the reference part lists a number of options to gain more
control over the module declaration.

3.6 Specialization with respect to indexed data

It is possible to split the static data into an indexed set of data fragments.
The main catch is that only one particular indexed value is available to
each single run of the specializer, the current world. The specializer can
request arbitrary elements (worlds) from this set using a special construct.
If the request concerns the current world then the specializer continues right
away. Otherwise, it checks the memoization cache. If the requested world
has already been seen in the past, it might be possible to resolve the request.
Otherwise, the specializer generates a new memoization point which waits
until the requested world becomes available to the specializer, possibly for
the second time.

The most striking application for this feature is the separate compilation
of modular programs by specializing an interpreter. In this application, the
index values are the names of modules and the standard semantics of the
special construct is to load the module’s text into memory.

An an example, we consider the compilation of a simple register machine
language. Here is an example session.

> (load "examples/modint-examples.scm")
examples/modint-examples.scm
> (p modulel)
((add (jz 1 copy)
(decr 1)
(incr 0)
(jump add))
(finis))
> (p module2)
((copy (jz 2 test)
(incr 1)
(decr 2)

18

(jump copy))
(test (jz 1 finis)
(jump add)))

The main function of the interpreter for this register-machine language ac-
cepts four parameters, a function that maps a label to a module name,
modulename-of, the entry label, name, the number of registers, nargs, and
the initial contents of the registers, initial _args. The name and nargs
inputs are known statically, the other inputs are dynamic.

> (define genext
(cogen-driver ’("examples/modint-base.scm" "examples/modint.scm")
’(main 1 0 0 1)))
bta-run
interpret-type: #(type-all t #(type-app -> (#(type-app b () #(type-app -> (#(type
interpret-type: #(type-all t #(type-var t))
bta-solve
bta-solve done
> ,open pgg-residual
> (writelpp genext "/tmp/modintO.scm")
> (load "/tmp/modintO.scm")
> (specialize-$goal ’add 2)
’(main-1 x1 x4)

Specialization stops right before loading the first module. So far, it generated
code for transferring the input list into the registers:

> (p (get-residual-program))
((define (main-1 x-2 x-1)
(let* ((mlet-3 (car x-1))
(mlet-4 (cdr x-1))
(mlet-5 (car mlet-4))
(mlet-6 (cdr mlet-4))
(mlet-7 (x-2 ’add)))
(jump-global-2 x-2 mlet-3 mlet-5))))

The call to jump-global-2 refers to code that will be generated as soon as
the next module becomes available. This fact is signalled to the system via
the continue function.

> (continue ’modl modulel)

19

At any point between invocations of continue it is possible to suspend
the state of specialization to a file. The corresponding command is

> (suspend "/tmp/suspended.scm")

Another, later session with pgg can resume this specialization after load-
ing the generating extension and reading the suspended file using resurrect.

> (load "/tmp/modint0.scm")

> (load "examples/modint-examples.scm")
> (resurrect "/tmp/suspended.scm")

#t

> (continue ’mod2 module2)

> (continue ’modl modulel)

The last two calls to continue complete the specialization of the inter-
preter of modular register machine programs.

The file modint-mutual . scm contains a more sophisticated implementa-
tion that compiles each module only once. Here is a transcript:

> (define genext
(cogen-driver ’("examples/modint-base.scm" "examples/modint-mutual.scm")
’(main 0 1 0 1)))
bta-run
interpret-type: #(type-all t #(type-app -> (#(type-app b () #(type-app -> (#(type
interpret-type: #(type-app -> (#(type-app b ()) #(type-app b (0)))
bta-solve
bta-solve done
> (writelpp genext "/tmp/regcompiler2.scm")
> (load "/tmp/regcompiler2.scm")
/tmp/regcompiler2.scm
> (specialize-$goal exported-labels 3)
>’ (main-1 x2 x4)

Here is the startup code for the compiled program:

> (p (get-residual-program))
((define (main-1 x-2 x-1)
(let* ((mlet-3 (car x-1))
(mlet-4 (cdr x-1))
(mlet-5 (car mlet-4))
(mlet-6 (cdr mlet-4))

20

(mlet-7 (car mlet-6))
(mlet-8 (cdr mlet-6)))
(case x-2
((add) (jump-2 mlet-3 mlet-5 mlet-7))
((finis) (jump-3 mlet-3 mlet-5 mlet-7))
((copy) (jump-4 mlet-3 mlet-5 mlet-7))
(else (dyn-error "Unknown name"))))))

Here is the code for the first module:

> (continue ’modl modulel)
> (p (get-residual-program))
((define (jump-2 mlet-3 mlet-2 mlet-1)
(if (zero? mlet-2)
(jump-4 mlet-3 mlet-2 mlet-1)
(jump-2 (+ mlet-3 1) (- mlet-2 1) mlet-1)))
(define (jump-3 mlet-3 mlet-2 mlet-1)
mlet-3))

Here is the code for the second module:

> (continue ’mod2 module2)
> (p (get-residual-program))
((define (jump-5 mlet-3 mlet-2 mlet-1)
(if (zero? mlet-2)
(jump-3 mlet-3 mlet-2 mlet-1)
(jump-2 mlet-3 mlet-2 mlet-1)))
(define (jump-4 mlet-3 mlet-2 mlet-1)
(if (zero? mlet-1)
(jump-5 mlet-3 mlet-2 mlet-1)
(jump-4 mlet-3 (+ mlet-2 1) (- mlet-1 1)))))

The input for this section, along with one more example, can be found
in file examples/sample modules_session.scm.

21

4 Reference manual

4.1 Notation

The syntax definition uses an extended BNF where all symbols are terminals,
except

e nonterminal symbols are capitalized;

e ::= |, x + [,] are metasymbols with the usual meaning (definition,
alternative, zero or more repetitions, one or more repetitions, begin of
optional part, end of optional part).

4.2 Type system

The type system is the system of simple types with a T type and recursion.
The type language comprises the types

e basic, for every expression that never evaluates to a function or an
element of an algebraic datatype as defined by define-data;

® [T1,...,Tn] — 70, for every expression that always evaluates to a func-
tion;
e TC[T1,...,Ts), for every expression that always evaluates to an ele-

ment of the algebraic datatype named TC (the 7; are the types of the
arguments of the constructors in some unspecified fixed order);

e T, for every expression that cannot be given one of the other types, in
particular for an expression that may evaluate
— to a function and also to some non-function value;

— to an element of datatype TC and also to an element of a different
datatype TC’ or an element of a non-algebraic type.

The PGG system performs type inference for this system using Henglein’s
algorithm [14]. Due to the presence of recursive types, the result of the type
inference is a graph where each node is annotated with a type constructor.

4.3 Binding-time analysis

The binding-time analysis assigns a binding-time to each node in the type
graph and ensures that the binding-time assignment is well-formed. Well-
formedness of such a binding-time assignment B means that the annotation

22

on a type node is always less than or equal to the annotations on the direct
descendants of that node. A node of type T is well-formed if it assumes the
maximum possible binding time (it is kept dynamic throughout all stages
of specialization). That means that potential type clashes are postponed to
the last stage of running the program.

The binding-time analysis inserts a lift-expression on top of each expres-
sion of basic type that occurs as

e the argument of a primitive operations;

e the argument of a function;

e the “then” or “else” arm of a conditional; or
e the argument of a data constructor.

A lift-expression injects a value computed at specialization time into the
residual program.

4.4 Primitive operations

For primitive operations, the binding time analysis imposes a second set
S of binding-time annotations on the nodes of the type graph. The well-
formedness criterium for them has two aspects. First, the S annotation is
always greater than or equal to the B annotation. Second, the S annota-
tion of a node is greater than or equal to the S annotations of each direct
descendant node in the type graph. For each expression that performs a
primitive operation, the specializer requires that all arguments are leveled.
That is, the binding time analysis enforces that the S and B annotations
of all arguments are equal. In consequence, all argument computations take
place at the same binding time (see [31]).

This restriction makes it safe to allow primitive operations to have func-
tions as arguments.

4.5 Representation analysis

PGG performs a representation analysis that assigns to each node in the type
graph yet another binding time M. The M annotation of a type is wired
in such a way that it reflects the maximum level +1 at which expressions
of that type will be subject to memoization, 0 if they are never memoized.
For example, an expression of a type with an M value of 0 will never be
memoized. All those expressions will use the standard representation of

23

values of that type. If the B annotation is zero and the M value is greater
than zero, the memoized representation will be used, which incurs a runtime
overhead. The general condition is that expressions with B < M use the
memoized representation and the others use the standard representation.

Unfortunately, there is a catch: if a type is memoized and at the same
time required to be leveled then the type must assume the maximum binding
time. This is, because primitive operations cannot deal with the memoized
representation. The catch is that we now have a cyclic dependency: B
implies the placement of memoization points, which implies a setting of M,
which implies a deteriorated setting of B, which implies the placement of
more memoization points, and so on.

4.6 Memoization

PGG automatically inserts memoization points on top of dynamic condi-
tionals and on top of dynamic lambdas. However, this only happens if the
branches of the dynamic conditional or the body of the dynamic lambda
contains a control transfer at specialization time, i.e., a static function call.
Furthermore, if several of these are nested in an expression, only the out-
ermost receives a memoization point. This is a slight refinement of the
standard strategy [3, 2].

It is possible to turn this feature off for a given function by defining it
using define-without-memoization (see 4.9.1). In any case, memoization
points can be defined and inserted manually (see 4.9.5).

4.7 Special expressions
4.7.1 eval

The binding-time analysis and the specializer treat eval specially. The
binding-time analysis enforces that the argument of eval is leveled. The
result type is also leveled and it may have any binding time that is greater
than or equal to the argument’s binding time.

If the binding times are equal then the eval function is called at the
specified level. If the binding times differ by one then the specializer simply
drops the static argument value into the residual program. Otherwise, the
specializer preserves the static argument for the next level and decrements
the binding-time difference.

24

4.7.2 apply

If a function is declared as the apply function (see 4.9.4) then the specializer
uses a special postprocessor that transforms expressions of the form

(apply f (cons x1 (cons x2 (cons x3 ...))))
into
(f x1 x2 x3 ...)

To this end, it is necessary to declare cons as pure (see 4.9.4).

4.7.3 lambda-poly

In addition to the standard lambda abstraction there is a polyvariant mem-
oizing abstraction operator.

E ::= (lambda-poly (V*) Ex)

The specializer treats a dynamic lambda-poly just like an ordinary lambda.
A static lambda-poly specializes to a vector of all required specializations of
the abstraction. The specializer constructs a partially static value consisting
of a memoization map and a reference to the vector. Both, the vector
and the memoization map, are initially empty. Whenever the specializer
applies a lambda-poly it looks up the static skeleton of the arguments in the
memoization map. If a specialization for this skeleton is already present in
the map, it constructs a reference to the corresponding position in the vector.
Otherwise, it extends the memoization map, constructs a new specialization
of the lambda-poly, and inserts it into the vector.

This construct implements a first-class memoization mechanism and it
could be used to replace the usual memoization.

4.8 Predefined operators

These operators can be used in source programs.
The module cogen-boxops exports the following operators that manip-
ulate references (boxed values):

(make-cell exp)

allocates a new mutable reference cell which initially contains the value of
exp. Returns the reference to the new cell.

(cell-ref exp)

25

returns the value stored in the referenced cell if exp evaluates to a reference.
(cell-set! expl exp2)

stores the value of exp2 in the cell referenced by expl provided this value
is a reference. The return value is unspecified.

4.9 Directives

The directives are only allowed at the top-level of a source program.

4.9.1 define-without-memoization

D ::= (define-without-memoization (P V*) DO* Ex)
| (define-without-memoization P E)

Define procedure P. The specializer does not to automatically insert memo-
ization points in the body of P.

4.9.2 define-data

D ::= (define-data TC (C Cix*)+)
| (define-data TC hidden (C Cix)+)

Define the algebraic datatype TC with constructors C and selectors Ci. In
addition, constructor test operations C? are defined. The name TC is used
during type checking to check for equality of types.

For example, the declaration

(define-data list
(nil)
(cons car cdr))

defines the constructors nil (nullary) and cons binary, the constructors
tests nil? and cons?, and the selectors car and cdr.

The binding-time analysis considers algebraic datatypes as partially static,
i.e., the arguments of a constructor can have a different (higher) binding time
than the constructor itself. In such cases, the specializer performs arity rais-
ing when appropriate. The constructors, selectors, and test operations are
binding-time polyvariant, i.e., each use of such an operation may have a
different binding-time pattern.

The second form of define-data declares a datatype whose elements
are ignored by the memoization mechanism. This is a potentially dangerous
feature because it can change the meaning of a program during specialization
by cheating the memoization mechanism.

26

4.9.3 define-type
D ::= (define-type (P B*) B)

Declares the arity of primitive operation P. The actual values of the Bs are
currently ignored.
Example:

(define-type (cons * *) *)

declares the operator cons of arity 2.

A variable which is declared as an operator but does not occur at oper-
ator position in an expression is eta-expanded by the frontend according to
its declaration.

4.9.4 define-primitive

D ::= (define-primitive 0 T [dynamicl|error|opaque|purel|apply|Number])

Declares the operator 0 of type T with an optional property.

The parameter T declares the type of the operator. It can be either -,
indicating that the type of 0 is not restricted, or it can specify a polymorphic
type for 0. The grammar is as follows:

T ::= - | TO
TO :: (all TV TO) | (rec TV TO) | (TC TOx) | TV

Here, TV stands for a type variable (an arbitrary symbol) and TC stands for a
type constructor (an arbitrary symbol). The syntax, (all TV TO), declares
that variable TV is all-quantified in TO, like Valpha.p. The syntax, (rec
TV TO), declares a recursive type, like pa.75. The remaining cases are type
constructor application and occurrence of a type variable. For convenience,
the function type constructor, ->, is treated specially. Writing (-> t1

tn t0) declares a Scheme function that takes n parameters (n > 0) and
delivers a result of type tO.

The properties dynamic and opaque are synonyms. Each of them forces
the binding time of 0’s result to be dynamic. The property error advises the
binding-time analysis that the result of the operation can assume any type
whatsoever (because an error primitive raises an exception and never returns
a value) and that its binding time is determined from the binding times of
the arguments as with any primitive operation. The remaining properties
advise the specializer what to do when it residualizes the operator. The

27

pure property states that the operator does not have side effects. Instead of
creating a let-binding for the expression (0 V*), the specializer will treat it
as a value, potentially discarding or duplicating the expression. The apply
property states that the operator 0 is the apply function as defined in the
Scheme standard.

If the property is a Number it declares the least binding time of the
operator.

4.9.5 define-memo

D ::= (define-memo M Number [Active])
| (define-memo M Number ’deferred)

Defines M as a unary operator indicating a memoization point at level Number.
This is also the binding time of the memoization point. For two-level special-
ization this number is 1. Useful in connection with define-without-memoization.
The optional parameter Active defines the minimum level of specialization
at which the specialization point is active. The default is 0, that is, the
specialization point is always active. Useful in connection with multi-level
specialization if the same program is specialized with different levels.

Both parameters, Number and Active may be integer expressions using
the free variable max-1level, which is bound to the maximum binding-time
presently in use.

Example: Similix defines the operator _sim-memoize as an indicator for
memoization points. To achieve the same behavior in PGG requires the
following declaration.

(define-memo _sim-memoize 1)

The second form of the directive declares an operator to construct de-
ferred memoization points. An applied occurrence of a deferred memoization
point has the form

MV E)

When specialization hits upon a deferred memoization point, it extracts the
static skeleton and looks it up in a secondary cache. Just as with standard
memoization points, it creates a function call to a specialized version of E.
The difference is that the specialization of E depends on a future value of V,
so it must be deferred until the value of V becomes available.

28

4.9.6 load

D ::= (load Filename)

includes the contents of the file named by the string Filename into the
program. The included file may contain additional loads, without limit on
the nesting level. The Filename argument is always interpreted relative to
the current directory that Scheme48 is running in.

4.9.7 begin

D ::= (begin Dx)

As in Scheme, top-level definitions may appear nested inside a begin. This
is handy if a macro is to expand to more than one definition.

4.10 Commands

This section summarizes the available top-level commands of the PGG sys-
tem.

4.10.1 Creating a generating extension

The main entry point of the system is the function cogen-driver. It takes
the following parameters

(cogen-driver InputSpec BindingTimeSkeleton)
where

e InputSpec is either a single string specifying the name of a “jobfile”
that contains a list of filenames, or a list of strings each of which
specifies a filename: the source program is the content of all these files
concatenated together.

e BindingTimeSkeleton is a list where the first element is a symbol
denoting the main function of the source program and the remain-
ing elements are binding times for the parameters of the main func-
tion. The main function must have exactly as many parameters as the
BindingTimeSkeleton indicates.

A binding time is a non-negative integer, with 0 denoting static. The PGG
system assumes that the binding time of the result of the main function is

29

the maximum of 1 and the binding times of the function’s parameters, i.e.,
the BindingTimeSkeleton.

The result of calling cogen-driver is a generating extension, i.e., a list
of Scheme definitions that can be loaded and run.

This function is defined in module pgg. If it is not accessible try

> ,open pgg

at the top-level Scheme48 prompt.

A number of optional parameters may be specified after the BindingTime-
Skeleton argument. They allow the generation of the generating extension
as a Scheme48 module. The following options are recognized.

e (goal SYMBOL) specifies that SYMBOL will be the name of the special-
ization entry point (i.e., the first parameter to specialize) of the
generating extension.

e (export SYMBOL ...) adds the listed SYMBOLs to the export list of
the generated module.

e (open SYMBOL ...) considers the listed SYMBOLs as module names
that are to be opened to run the generating extension.

e (files SYMBOL ...) considers the listed SYMBOLs as names of files
that will be included in the generating module.

e (SYMBOL ...) isincluded as an option line in the structure declaration
for the generating module.

e STRING the name of the file where the module should be written.
Must be the last; subsequent options are ignored. Writes the files
STRING.scm and STRING.config.scm, after stripping any extension
from STRING.

4.10.2 Running a generating extension

The function specialize is the human interface to running a generating
extension. It has two forms.

(specialize GenextMain BindingTimeSkeleton ARGS)
and

(specialize BindingTimeSkeleton ARGS NEW-GOAL)

30

where
e GenextMain is the main function of the generating extension,

e BindingTimeSkeleton is a list where the first element is a symbol
denoting the name of main function of the generating extension, and
the remaining elements are binding times its parameters. The list of
binding times must be identical to the one given to cogen-driver
when creating this generating extension.

e ARGS is the list of arguments to the generating extension. Its length
must be equal to the number of binding times supplied in the Binding-
TimeSkeleton. The positions corresponding to 0 entries in the skele-
ton contain the currently static arguments. The positions correspond-
ing to other entries in the skeleton must contain symbols, they are
used as stubs for generating identifiers.

e (optional argument) NEW-GOAL is the name of the entry point for the
specialized program. If it is not specified, PGG invents one for you,
but admittedly not a very original one.

The result is a call template for the specialized function, a list consisting of
the name of the function and of names of the arguments. The residual pro-
gram can be retrieved via (get-residual-program). It is a list of Scheme
definitions. Furthermore, the variable *support-code* contains additional
code, for example data definitions that are necessary to run the specialized
program.

If the returned call template has the form

>(multi-memo Level ’Goal Goal Bts Args)

then we have done one step of a multi-level specialization [13]. It means
that the residual program is again a generation extension where Level is a
number, Goal is the name of the entry point, Bts are the binding times of
the arguments, and Args is a list of symbols of the same length. It can be
loaded as usual and specialized again with specialize by constructing the
BindingTimeSkeleton from Goal and Bts.

This function is defined in module pgg-residual. If it is not accessible
try

> ,open pgg-residual

at the top-level Scheme48 prompt.

31

4.10.3 Continuing a specialization

The function continue continues a specialization that has been suspended
at a deferred memoization point.

(continue Name Arg)

The parameter Name identifies the index that the specialization waits for. It
is used to match the index value in pending deferred memoization points.
The example in Section 3.6 uses the symbols ’modl and ’mod2 for this
purpose.

The parameter Arg is the indexed value. This is a value of base type
and its representation is completely up to the programmer. The example in
Section 3.6 uses the empty list to indicate an empty world.

4.10.4 Suspend a deferred specialization

The function suspend writes the current memoization cache and the cache
of deferred specializations to a file.

(suspend Filename)
The Filename parameter indicates the name of the file in which the memo-
ization cache and the deferred cache are stored.

4.10.5 Resurrect a deferred specialization

The function resurrect installs a memoization cache and deferred cache
from a file. It sets up the system to continue a previously suspended spe-
cialization.

(resurrect Filename)

The Filename parameter indicates the name of the file in which the memo-
ization cache and the deferred cache are stored.
Returns #t if the file was successfully read. Otherwise, it returns #£.

4.11 Settable options

These options are accessible in module cogen-globals except where other-
wise noted. Some of them only make sense for programmers who want to
use the frontend separately.

32

(set-bta-display-level! n) Default: 1.

Display output from the binding-time analysis, 0 < n < 4. 0 means
no output.

(set-effect-display-level! n) Default: 1.

Display output from the effect analysis. 0 means no output.

(set-scheme->abssyn-let-insertion! v) Default: #f.

Instruct the frontend to insert let expressions for the bound variables
of lambdas and definitions.

Useful if the frontend is to be used in other projects.

(set-memo-optimize! v) Default: #t.

Optimize the representation of functions and algebraic datatypes. Use
expensive memoized representation only for data that actually passes
a memoization point.

(set-abssyn-maybe-coerce! v) Default: #t.

Instructs the frontend to insert provisional lift expressions at certain
places. The backend eliminates these later on if they are useless. Can
be turned of for using the frontend separately.
(set-generate-flat-program! b) Default: #f.

Instructs the generating extension to produce flat programs. By de-
fault, the residual programs have exaclty one top-level definition, all
others are nested inside and invisible to the outside.
(gensym-ignore-name-stubs!) (module cogen-gensym)

Instructs the generating extension to ignore name stubs when gener-
ating fresh symbols.

(gensym-use-name-stubs!) (module cogen-gensym) Default.
Instructs the generating extension to use provided name stubs wher-
ever possible.

(set-memolist-stages! n) Default: 0.

Set optimization level for memoization table. If set to n then memoiza-
tion uses n cascaded association lists, indexed by the first n elements
of the static projection at a memoization point.

33

e (set-lambda-is-pure! v) Default: #t.

The code generator considers lambda abstractions as pure values if
this flag is set.

e (set-lambda-is-toplevel! v) Default: #f.

Generate a toplevel function for each memoized lambda abstraction if
set. Required for suspend and resurrect to work properly.

4.12 Utilities

Pretty printing is available through function p in module pretty-print.
The function takes one parameter, the expression that is to be pretty-
printed.

The function (writelpp LIST FILE) writes the list LIST to file FILE
applying the pretty printer to each element of the list. It is defined in

module auxiliary.
The contents of modules are generally available by typing

> ,open Modulename

to the top-level command line interpreter of Scheme48.

5 Differences to Scheme

PGG assumes a declarative semantics: the order of a sequence of top-level
definitions does not matter, even if they are spread over several files.

PGG implements R5RS macros with the restriction that macros defined
by let-syntax and letrec-syntax cannot expand to macro definitions.

6 Reading a generating extension

For debugging purposes it is sometimes helpful to read the generating exten-
sion, because it is a representation of the binding-time annotated program.
Besides standard Scheme constructs it contains the following kinds of expres-
sions, most of which are implemented as macros in module pgg-library.
The semantics of the ellipsis ... is the same as in the syntax-rules pat-
terns of Scheme [19], zero or more repetitions of the preceding item. The
list is sorted alphabetically.

34

(multi-memo level fname fct bts args) denotes a memoization
point at level level, fname is a symbol specifying the name of the
generating function to run, fct is the function itself, bts is a list of
binding times describing the arguments of the function, args is the
list of arguments (must have the same length as bts)

(_app 1lv f a ...) application of non-memoized function f to argu-
ments a ... at level 1v

(_app 1v f a ...) application of memoized function f to arguments
a ... atlevel 1v

(_begin 1v bl el e2) a begin at level 1v, bl is the binding time of
el

(_cell-set!_memo lv ref arg) updates a memoized reference cell
ref at level 1v with value arg

(_cell-eq?_memo lv refl ref2) tests two memoized reference cells
refl and ref2 for equality at level 1v

(_ctor_memo 1lv (bt ...) ctor arg ...) creates a memoized ob-
ject with constructor ctor, 1v is the binding time of the structure,
(bt ...) are the binding times of the arguments arg ...

(_eval 1lv diff body) the body becomes available at level 1v then
it is delayed for diff levels

(_freevar 1lv arg) a free variable arg at level 1v

(_if 1v bl el e2 e3) the conditional at level 1v, bl is the binding
time of the branches e2 and e3, el is the condition

(_1ift0 1v val) delay the value val to level 1v

(_1ift 1v diff value) the value becomes available at level 1v, then
it is delayed for another diff levels

(_lambda 1lv v* e) non-memoized lambda abstraction at level lv,
formals v*, body e

(_lambda_memo lv arity label fvs bts f) memoized lambda ab-
straction at level 1v, arity is a list of symbols serving as stubs for
variable names, label is the unique label of the lambda, fvs is a list

35

of the (values of the) free variables, f is a function that maps the val-
ues of the free variables and the variable names generated from arity
to a new body

e (_make-cell_memo lv lab bt arg) creates a memoized reference cell
at level 1v, with unique label 1lab, bt is the binding time of the argu-
ment arg

e (_op 1v op arg ...) the operator op applied to arg ... at level 1v

e (_op_pure 1lv op arg ...) the pure operator op applied to arg ...
at level 1v

e (_s_t_memo 1lv sel v) a selector or test for a memoized datastruc-
ture at level 1v, sel is the selector or test function, v is the argument

e (_vlambda lv (fixed-var ...) var body) same as _lambda, but
for variable arity; the list of fixed-var names the obligatory argu-
ments and var names the optional argument list

e (_vlambda_memo lv fixed-vars var label vvs bts f) memoized
lambda abstraction with variable arity functions, see _lambda_memo
and _vlambda for explanation

7 Technical background

7.1 Partial evaluation in general

Good starting points for the study of partial evaluation are Jones, Gomard,
and Sestoft’s textbook [18], Consel and Danvy’s tutorial notes [6], Mogensen
and Sestoft’s encyclopedia chapter [23], and Gallagher’s tutorial notes on
partial deduction [12]. Further material can be found in the proceedings
of the Gammel Avernaes meeting (PEMC) [1, 11], in the proceedings of the
ACM conferences and workshops on Partial Evaluation and Semantics-Based
Program Manipulation (PEPM) [15, 4, 25, 27, 24, 5, 8|, and in special issues
of various journals [16, 17, 21, 28]. A comprehensive volume on partial
evaluation appeared in the Lecture Notes of Computer Science series [9].
Sestoft maintains an online bibliography [26].

The above paragraph is taken from the introduction to the 1998 Sym-
posium on Partial Evaluation [10] which is a collection of concise articles
characterizing the state of the art, stating challenging problems, and outlin-
ing promising directions for future work in partial evaluation.

36

7.2 Directly related publications

The following publications explain various parts of the PGG system.

e Cogen in Six Lines [29] explains how to derive a handwritten multi-
level cogen from a multi-level specializer and applies this to the con-
struction of a continuation-based handwritten multi-level cogen. This
is done in continuation-passing style and in direct style with control
operators.

e Towards Specialization of Full Scheme [31] explains the specialization
of eval, apply, and call/cc. It relies on a binding-time analysis that
allows for higher-order primitive operations.

e Implementing Memoization for Partial Evaluation [30] gives details
about the implementation strategy for partially static values in PGG.

e Correctness of a Region-Based Binding-Time Analysis [32] defines and
proves correct a binding-time analysis for a lambda calculus with side-
effects.

e Sound Specialization in the Presence of Computational Effects [22] de-
fines a specialization calculus based on Moggi’s computational lambda
calculus and shows how to implement it. This calculus is the basis of
PGG’s specialization algorithm.

7.3 Structure of the implementation

The frontend of PGG is similar to the frontend of a Scheme compiler.

The first pass renames all variables, expands macros, expands back-
quotes, transforms named lets to letrecs, and collects mutable variables.
The second pass performs assignment conversion, eliminating all (set! v
e) operations in favor of (cell-set! v e’), replacing all uses of v by
(cell-ref v), and changing the definition of v accordingly. The third pass
performs lambda lifting. The fourth pass transforms to abstract syntax and
performs eta expansion.

The next phase is binding-time analysis. It consists of type inference, ef-
fect analysis (if cell-set! and friends have been used), construction of the
binding-time constraints, solution of the constraints, and the introduction
of memoization points.

Finally, the backend produces the generation extension.

37

8 Known problems

e Syntax errors are not dealt with gracefully.

e Do not use identifiers that end with ([-_]1[0-9]+)+ (interpreted as a
regular expression for the regexp library) for procedures and global
variables.

Acknowledgments

Most parts of the system have been developed while the author was at
Tiibingen University. Special thanks to Michael Sperber for unwaveringly
testing the system, pushing it to its limits, suggesting new features, finding
many problems (as well as some surprising features), and supplying some bug
fixes. Thanks also to Simon Helsen and Frank Knoll who suffered through
various versions of the system.

References

[1] Dines Bjgrner, Andrei P. Ershov, and Neil D. Jones, editors. Partial
Evaluation and Mixed Computation, Amsterdam, 1988. North-Holland.

[2] Anders Bondorf. Automatic autoprojection of higher order recursive
equations. Science of Computer Programming, 17:3-34, 1991.

[3] Anders Bondorf and Olivier Danvy. Automatic autoprojection of recur-
sive equations with global variables and abstract data types. Science
of Computer Programming, 16(2):151-195, 1991.

[4] Charles Consel, editor. Proceedings of the 1992 ACM SIGPLAN
Workshop on Partial Evaluation and Semantics-Based Program Ma-
nipulation, San Francisco, CA, June 1992. Yale University. Report
YALEU/DCS/RR-9009.

[5] Charles Consel, editor. Proceedings of the 1997 ACM SIGPLAN Sym-
posium on Partial Evaluation and Semantics-Based Program Manipu-
lation, Amsterdam, The Netherlands, June 1997. ACM Press.

[6] Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation.
In Proceedings of the 1993 ACM SIGPLAN Symposium on Principles of
Programming Languages, pages 493-501, Charleston, South Carolina,
January 1993. ACM Press.

38

[7]

8]

[14]

Olivier Danvy. Semantics-directed compilation of nonlinear patterns.
Information Processing Letters, 37(6):315-322, March 1991.

Olivier Danvy, editor. Proceedings of the ACM SIGPLAN Workshop on
Partial Evaluation and Semantics-Based Program Manipulation PEPM
’99, San Antonio, Texas, USA, January 1999. BRICS Notes Series NS-
99-1.

Olivier Danvy, Robert Gliick, and Peter Thiemann, editors. Dagstuhl
Seminar on Partial Evaluation 1996, number 1110 in Lecture Notes
in Computer Science, Schlo3 Dagstuhl, Germany, February 1996.
Springer-Verlag.

Olivier Danvy, Robert Gliick, and Peter Thiemann, editors. 1998 Sym-
posium on Partial Evaluation, volume 30 of ACM Computing Surveys.
ACM Press, September 1998.

Andrei P. Ershov, Dines Bjgrner, Yoshihiko Futamura, K. Furukawa,
Anders Haraldsson, and William Scherlis, editors. Special Issue: Se-
lected Papers from the Workshop on Partial FEvaluation and Mized
Computation, 1987 (New Generation Computing, vol. 6, nos. 2,3).
Ohmsha Ltd. and Springer-Verlag, 1988.

John Gallagher. Tutorial on specialisation of logic programs. In Schmidt
[25], pages 88-98.

Robert Gliick and Jesper Jorgensen. Efficient multi-level generating ex-
tensions for program specialization. In Doaitse Swierstra and Manuel
Hermenegildo, editors, International Symposium on Programming Lan-
guages, Implementations, Logics and Programs (PLILP ’95), number
982 in Lecture Notes in Computer Science, pages 259-278, Utrecht, The
Netherlands, September 1995. Springer-Verlag.

Fritz Henglein. Efficient type inference for higher-order binding-time
analysis. In John Hughes, editor, Proc. Functional Programming Lan-
guages and Computer Architecture 1991, number 523 in Lecture Notes
in Computer Science, pages 448-472, Cambridge, MA, 1991. Springer-
Verlag.

Paul Hudak and Neil D. Jones, editors. Proceedings of the ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-Based Program
Manipulation PEPM °91, New Haven, CT, USA, June 1991. ACM. SIG-
PLAN Notices 26(9).

39

[16]

[17]

[18]

[19]

[20]

[21]

22]

23]

[24]

[25]

Journal of Functional Programming 3(3), special issue on partial eval-
uation, July 1993. Neil D. Jones, editor.

Journal of Logic Programming 16 (1,2), special issue on partial deduc-
tion, 1993. Jan Komorowski, editor.

Neil Jones, Carsten Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall, 1993.

Richard Kelsey, William Clinger, and Jonathan Rees. Revised® report
on the algorithmic language Scheme. Higher-Order and Symbolic Com-
putation, 11(1):7-105, 1998.

Richard A. Kelsey and Jonathan A. Rees. A tractable Scheme imple-
mentation. Lisp and Symbolic Computation, 7(4):315-335, 1995.

Lisp and Symbolic Computation 8 (3), special issue on partial evalua-
tion, 1995. Peter Sestoft and Harald Sgndergaard, editors.

Julia Lawall and Peter Thiemann. Sound specialization in the presence
of computational effects. In Proceedings of the Theoretical Aspects of
Computer Software, number 1281 in Lecture Notes in Computer Sci-
ence, pages 165—-190, Sendai, Japan, September 1997. Springer-Verlag.

Torben A. Mogensen and Peter Sestoft. Partial evaluation. In Allen
Kent and James G. Williams, editors, Encyclopedia of Computer Sci-
ence and Technology, volume 37, pages 247-279. Marcel Dekker, 270
Madison Avenue, New York, New York 10016, 1997.

William Scherlis, editor. Proceedings of the ACM SIGPLAN Sympo-
sium on Partial Evaluation and Semantics-Based Program Manipula-

tion PEPM 95, La Jolla, CA, USA, June 1995. ACM Press.
David Schmidt, editor. Proceedings of the 1993 ACM SIGPLAN Work-

shop on Partial Evaluation and Semantics-Based Program Manipula-
tion, Copenhagen, Denmark, June 1993. ACM Press.

Peter Sestoft. Bibliography on partial evaluation. Available through
URL ftp://ftp.diku.dk/pub/diku/dists/jones-book /partial-eval.bib.Z.

Peter Sestoft and Harald Sgndergaard, editors. Proceedings of the 1994
ACM SIGPLAN Workshop on Partial Fvaluation and Semantics-Based
Program Manipulation, Orlando, Fla., June 1994. University of Mel-
bourne, Australia. Technical Report 94/9, Department of Computer
Science.

40

28]

[29]

[30]

Theoretical Computer Science, special issue on partial evaluation, 1998.
Charles Consel, editor.

Peter Thiemann. Cogen in six lines. In Kent Dybvig, editor, Proceed-
ings of the 1996 International Conference on Functional Programming,
pages 180-189, Philadelphia, PA, May 1996. ACM Press, New York.

Peter Thiemann. Implementing memoization for partial evaluation. In
Herbert Kuchen and Doaitse Swierstra, editors, International Sympo-
situm on Programming Languages, Implementations, Logics and Pro-
grams (PLILP ’96), number 1140 in Lecture Notes in Computer Sci-
ence, pages 198-212, Aachen, Germany, September 1996. Springer-
Verlag.

Peter Thiemann. Towards partial evaluation of full Scheme. In Gregor
Kiczales, editor, Reflection’96, pages 95—-106, San Francisco, CA, USA,
April 1996.

Peter Thiemann. Correctness of a region-based binding-time analysis.
In Proceedings of the 1997 Conference on Mathematical Foundations
of Programming Semantics, volume 6 of Electronic Notes in Theoreti-
cal Computer Science, page 26, Pittsburgh, PA, March 1997. Carnegie
Mellon University, Elsevier Science BV. URL: http://www.elsevier.
nl/locate/entcs/volume6.html.

41

Index

support-code................. 31
apply....c.ooiiiiiiiin, 25, 27, 37
begin........... 29
binding time

skeleton............... 6, 29, 31

specification of 28, 29
cell-ref 25, 37
cell-set!................... 25, 37
cogen-driver.......... 6,7, 12, 29
continue.................... 19, 32
define-data....... 9, 11-13, 22, 26
define-memo.................... 28
define-primitive.............. 27
define-type.................... 27
define-without-memoization.. 11,

26, 28

dynamic.......... ..., 27
=N o o 27
eval......... ool 24, 37
gensym-ignore-name-stubs! ... 33
gensym-use-name-stubs!....... 33
get-residual-program....... 8, 31
heapsizecoo it 6
lambda-poly.................... 25
load ... 29
make-cell 25
memoization point 24, 28

deferred 28

multi-level specialization. .15, 28, 31

o) oX-Te 11 LN 27

Do 34
partially static 9, 26
pgg.image....................L 6
PUTE. ... 25, 27
TESUME . oo vvvvveeteeeeeeeeennnnn. 32
resurrect................... 20, 34
set-abssyn-maybe-coerce!..... 33
set-bta-display-levell 33
set-effect-display-level! ... 33
set-generate-flat-program! .. 33
set-lambda-is-pure!........... 34
set-lambda-is-toplevel!...... 34
set-memo-optimize!............ 33
set-memolist-stages! 33
set-scheme->abssyn-let-insertion!
33

specialization

modular programs........... 30
specialize 30
suspend............ou... 20, 32, 34
writelpp......cooiiiiiiiiiii. .. 34

42

