
Essence—An LR Parser Generator for Scheme
Version 2.0

Mike Sperber
sperber@deinprogramm.de

Peter Thiemann
thiemann@informatik.uni-freiburg.de

Abstract

Essence is a generator for LR(k) and SLR(k) parsers in Scheme. The
generated parsers perform error recovery, and are highly efficient. Testing
and debugging a parser does not require an edit—generate—compile—test
cycle. Rather, the parser generator results from a general parser which
takes the input grammar as a parameter; no generation and recompilation
is necessary to try out changes to a grammar. The generated parsers result
from the general parser by an automatic program transformation called
partial evaluation [9, 10]. This guarantees consistency and ensures cor-
rectness. However, no specific knowledge of partial evaluation is required
to use Essence.

This document assumes elementary knowledge about S-attributed grammars
and LR parsing, available in almost any compiler construction textbook [2, 7,
1, 11]. It may also be helpful to study the documentation of more traditional
parser generation packages such as Yacc [4] or Bison [3].

1 Introduction

The pragmatics of using Essence are slightly different from that of using other
parser or parser generation packages.

At the heart of parsing is, as usual, a context-free grammar. Essence provides
a new syntactic form define-grammar (section 3) which embeds a language for
attributed context-free grammars into Scheme. This is different from other
parser generation packages which either represent a context-free grammar as an
S-expression object or in some special syntax in a special file.

Given a grammar, parsing can proceed in one of two modes:

• A general parse procedure will accept a grammar, a parsing method
(SLR or LR), a lookahead size, and an input, and produce the result
of parsing and attribute evaluation. This mode of operation allows in-
stant turnaround, but also parses very slowly. It is good for incremental
development, but impractical for production parsers.

1

• A parser generator (automatically generated from the implementation of
parse) produces a specialized parser from a grammar, a parsing method,
and a lookahead. The specialized parser only accepts an input as an
argument, but is otherwise identical in operation to the general parser. It
is highly efficient, and therefore good for production use.

2 Prerequisites

Currently, Essence itself only runs under Scheme 48 [6]. However, the generated
parsers run under any R5RS [5] Scheme. Moreover, the dependencies on non-
standard features of Scheme48 which Essence uses have been carefully factored
out with the help of the Scheme 48 module system; making it work in any given
Scheme implementation is not hard.

The Essence distribution contains three files to be loaded into Scheme 48’s
configuration package: interfaces.scm, packages.scm, and src/cps-lr-genext.config.scm.
To make Essence available within Scheme 48, it is always necessary to load
interfaces.scm (via ,config ,load interfaces.scm) and packages.scm (via
,config ,load packages.scm). To use the parser generator, it is also neces-
sary to load genext/genext-packages.scm from the Essence distribution, as
well as src/cps-lr-genext.config.scm. To make this process more conve-
nient, Essence includes a file load-essence.scm which is written in the exec
language of Scheme 48. To load it, invoke this in the Scheme 48 REPL:

,exec ,load load-essence.scm

This will output a warning which can safely be ignored:

Warning: undefined variables
#{Package 250 config}
essence-cps-lr-genext
(&warning)

3 Grammars

Context-free grammars are at the heart of parser generation. Essence allows
specifying so-called S-attributed grammars with evaluation rules for synthesized
attributes. The assumption is that each node in the parse tree carries an in-
stance of exactly one synthesized attribute, and an Essence grammar provides an
expression describing how to compute the attribute along with each production.

The structure essence-grammars provides a defining form for grammars.
(It also provides numerous accessors and algorithms over grammars. However,
these are not relevant for using Essence.)

An Essence grammar consists of two data objects: a representation of the
grammar itself, and an enumeration which is needed to symbolically encode the
input to the parser. The macro define-grammar from the essence-grammars
structure form defines both:

2

(define-grammar 〈variable1〉 〈variable2〉
〈terminals〉 〈start-symbol〉 〈rules〉) syntax

Syntax: 〈Terminals〉 has the form

(〈terminal〉 ...)

where each 〈terminal〉 is an 〈identifier〉. 〈Start-symbol〉 must be a an identifier.
〈Rules〉 has the form:

(〈rule〉 ...)

where each indivial 〈rule〉 has the form

(〈nonterminal〉 ((〈grammar-symbol〉 ...) 〈attribution〉) ...)

where each 〈grammar-symbol〉 is either a 〈nonterminal〉, a 〈terminal〉, or $error.
(The latter is for directing error recovery (see sec. 6) 〈Attribution〉 is a Scheme
expression.

The set of nonterminals is defined by the 〈nonterminals〉s of the 〈rule〉s. The
nonterminals must be disjoint from the terminals. Moreover, lThe start symbol
must be a nonterminal.

Semantics: Define-grammar defines a context-free grammar along with an
enumeration type for its symbols. Define-grammar binds a data object rep-
resenting the grammar to its first argument, and an enumeration type for its
symbols to its second argument.

The third argument to define-grammar is a list of nonterminals, the fourth
a list of terminals. The fifth argument is the start symbol (which must be one
of the nonterminals), then comes a list of the grammar rules.

A grammar rule specifies a list of productions for the specified nontermi-
nal. Each subform ((〈grammar-symbol〉 ...) 〈attribution〉) specifies a right-
hand side and an attribution.

The attribution is a Scheme expression, which may have free variables $i,
where i ranges from 1 to the number of symbols on the right-hand side of the pro-
duction. During parsing, the Essence parser binds $i to the attribute instance
of the ith symbol on the right-hand-side when evaluating the attribution.

Here is a simple example grammar for arithmetic expressions:

(define-grammar g10 g10-symbol
(+ - * / l r n)
E
((E ((T) $1)

((T + E) (+ $1 $3))
((T - E) (- $1 $3)))

(T ((P) $1)
((P * T) (* $1 $3))
((P / T) (/ $1 $3)))

3

(P ((n) $1)
((l E r) $2))))

This definition establishes an enumeration type g10-symbol with components
(in that order):

• $Start (for the fresh start symbol generated by define-grammar),

• the nonterminals in the same order as in the define-grammar form,

• $Error, and

• the terminals in the same order as the define-grammar form.

The members of the enumeration may be accessed using the enumerated struc-
ture that comes with Scheme 48: (enum g10-symbol +), for instance, is an
expression whose value is an exact non-negative integer, corresponding to the
position of + in the enumeration, in this case 5 (it’s the first terminal, after
three nonterminals, $start, and $error).

4 Running a Parser

Parsing with respect to a grammar does not require generating a specialized
parser along with the associated overhead of compiling and loading. Essence
provides general parsers which accept a grammar as input and parse “right
away.” This allows incremental debugging and development of attributed gram-
mars to be used with Essence.

Essence actually comes with a number of different implementations of LR
parsing. The packages.scm configuration file contains definitions for a range of
structures all with the interface essence-parser-interface. The one intended
for production use is in the essence-cps-lr structure whose implementation
resides in src/cps-lr.scm. Essence-parser-interface describes only one
binding called parse:

(parse grammar lookahead method trace-level input) procedure

• Grammar is a grammar defined by define-grammar.

• Lookahead is a non-negative integer denoting the lookahead the parser
uses.

• Method is a symbol, either lr or slr, specifying the parsing method used—
either full LR parsing or SLR parsing.

• Trace-level is 0, 1, 2, 3 depending on the amount of tracing desired. 0
means no tracing, 1 means that the closure of the state where an error is
encountered is passed to parse-error. 2 means that the states encoun-
tered during parsing are printed, 3 means that the complete closures are
printed.

4

• Input is a list of pairs; each pair consists of an enumerand of the terminals
of grammar and the corresponding attribute value. It is the input to the
parser.

The enumerands are the ordinal numbers of the enumerated values. These
are easiest obtained via the enumerated structure of Scheme 48. In the
absence of an implementation of grammar and enumerated, the list of com-
ponents (see section 3) describes the mapping between grammar symbols
and enumerands; the enumerands are 0-based.

Parse returns the result of attribute evaluation on the parse tree induced by
input. This is ultimately the result of the attribution associated with the start
production.

The parse procedure can be applied to sequence representations other than
lists: To this end, Essence includes a parameterized structure make-essence-cps-lr,
which takes a structure with interface essence-list-inputs-interface as
an argument. This interface includes only the three procedures input-null?,
input-car, and input-cdr, which are used in the same way as null?, car, and
cdr. The “default” implementation used by the essence-cps-lr structure is
essence-list-inputs, which defines these to the list procedures.

If the grammar contains productions containing $error symbols, the parser
will attempt error recovery (see section 6) when possible.

5 Generating a Specialized Parser

In addition to simply calling parse, Essence also allows the generation of highly
efficient specialized parsers with respect to a grammar, lookahead, and parsing
method. Essence offers a (Unix) batch version of the parser generator, as well
as a Scheme 48 package which allows access from within a REPL.

In order to run, the specialized parsers require definitions for input-null?,
input-car, and input-cdr as described in the previous section. Moreover, they
require an parse-error procedure. The specialized parser will call parse-error
when an unrecoverable error occurs. It has the following signature:

(parse-error message closure error-status recovering? symbol
input) procedure

Here, closure is either #f or the LR closure in which the error occurred, de-
pending on the tracing level. Error-status is either #f if this is the first parse
error, or a non-negative exact integer saying how many lexemes have been con-
sumed since the last error. Recovering? says whether this is an error from
the recovering action of the parser (see section 6, and hence parse-error may
return, or whether the parser cannot recover, and hence parse-error should
not return. Symbol is the symbol on which the parser tried to shift, and input
is the remaining input.

5

Batch operation

Installation of Essence creates a binary called essence. When called with a
--help or -h argument, it prints a synopsis of its syntax:

essence (-g goal-proc | --goal-proc=goal-proc | --goal-procedure=goal-proc)
(-m method | --method=method)
(-l lookahead | -lookahead=lookahead)
(-s | --states)
(-p | --pp --pretty-print)
(-6 library-name | --r6rs-library=library-name)
(-i library-name | --r6rs-import=library-name)
input-file grammar-name output-file

• Input-file is a Scheme source file which Essence will load into a pack-
age with the standard R5RS Scheme bindings as well as define-grammar
(section 3). The file must contain the definition for at least one grammar.

• Grammar-name is the name of the grammar defined in input-file for
which Essence is to generate a specialized parser.

• Output-file is the name of the file into which Essence writes the special-
ized parser.

• Goal-proc is the name of entry procedure into the specialized parser. It
will accept just one argument, an input list. The default is parse.

• Method is the parsing method, either slr or lr. The default is slr.

• Lookahead is the lookahead size, a non-negative number. The default is
1.

If the -s or --states option is supplied, Essence will print the states of the LR
automaton to standard output.

If the -p, --pp, or --pretty-printoption is supplied, Essence will pretty-
print the source code of the generated parser instead of justing using write.
Note that this increases the size of the output substantially.

In addition to the goal-proc procedure, the output file also contains a
define-enumeration form that defines the mapping between grammar symbols
and enumeration values. The form has the following syntax:

(define-enumeration 〈identifier〉 (〈symbol〉 . . .))

The identifier is the name of the enumeration type of the grammar, and the
〈symbol〉s are the names of all terminals and nonterminals of the grammar
(including $error). The first 〈symbol〉 is mapped to enumeration value 0, the
second to 1, and so forth. The define-enumeration form is suitable for use
with Scheme 48’s enumerated package.

6

If the -6 or --r6rs-library option is supplied, Essence will generate an
R6RS library [8]. The library will have the name supplied as an argument to
the option. In this case, the -i or --r6rs-import option will also need to be
supplied for each import the generated library is to have. Note that even (rnrs
base) will need to be imported directly. For example, following command-line
fragment:

-6 ’(org example parser)’ -i ’(rnrs base)’ -i ’(org s48 essence support)’

will create an R6RS library called (org example parser), whose implementa-
tion imports (rnrs base) and (org example parser).

The file src/r6rs-support.scm contains an example R6RS library with
parser support code suitable for import into an Essence parser library.

REPL operation

The generator-packages.scm configuration file defines a structure essence-cps-lr-generate
which offers a procedure that generates specialized parsers:

(generate-parser grammar lookahead method goal-name) procedure

Grammar, lookahead, and method are as with parse (section 4).
The goal-name argument to generate-parser is a symbol which names

the entry procedure into the parser. Generate-parser generates a list of S-
expressions which, when written out sequentially, represent the code of the
specialized parser.

6 Error Recovery

Essence parsers can perform recovery from parsing errors in the manner of
Yacc [4] and Bison [3]. The basic idea is that the author of a grammar can
specify special error productions at critical places in a grammar designed to
“catch” parsing errors. This allows printing specially tailored error messages as
well as some control over attribute evaluation in such a case.

Error productions contain a special grammar symbol $error on the right-
hand side. ($Error must not be explicitly declared as a terminal or nonterminal
in the define-grammar form.)

When an error occurs during parsing, an Essence parser pretends that it
has just seen $error in the input. It will go back to the last LR state capable
of accepting $error as the next symbol in the input. Moreover, it discards
terminals from the input until the next input terminal is acceptable as the next
input symbol after it has consumed $error. Subsequently, the parser resumes
work as usual.

To prevent excessive avalanching of error messages, the parse-error pro-
cedure (see section 5) should examine the error-status argument, and typically

7

assure that a certain number of terminals have been consumed since the last
error before reporting a new one.

Here is an example for the constant arithmetic expressions grammar guar-
anteed to catch all errors:

(define-grammar g10-error g10-error-symbol
(+ - * / l r n)
E
((E ((T) $1)

(($error) 0)
((T + E) (+ $1 $3))
((T - E) (- $1 $3)))

(T ((P) $1)
((P * T) (* $1 $3))
((P / T) (/ $1 $3)))

(P ((n) $1)
((l E r) $2)
((l $error r) 0))))

Apart from the first catch-all rule containing $error, the parser will also, when
encountering an error inside a parenthesized expression, skip until the next
closing parenthesis to resume parsing.

7 Example Session

To see all this in action, we work through a little example involving one of the
provided example grammars. First, to start the system, type

% scheme48 -i essence.image -h 8000000

at the shell prompt. The mechanism to define a grammar are available from
structure essence-grammars (see 3). To open the structure type

> ,open essence-grammars

to the Scheme48 system, followed by

> ,load examples/toy-grammars.scm

to load the definitions for some simple grammars.
Loading the corresponding inputs requires enumerated values, hence

> ,open enumerated
> ,load examples/toy-inputs.scm

defines the example inputs.
Open the parser module by typing

> ,open cps-lr

8

to gain access to the parse function (see Sec. 4).
As a sample run, consider the grammar g10 which specifies arithmetic ex-

pressions. The terminals l and r stand for opening and closing brackets, whereas
n stands for a number.

> (parse g10 1 ’lr 0 i10-1)
147

To specialize a parser requires to open the structure essence-cps-lr-generate:

> ,open essence-cps-lr-generate

The generate-parser function from this structure (see Sec. 5) performs the
specialization:

> (generate-parser g10 1 ’lr ’expr-parser)

To perform the same specialization task via the command line interface type

% ./essence -g expr-parser -m lr -l 1 \
examples/toy-grammars.scm g10 /tmp/expr-parser.scm

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[2] Nigel P. Chapman. LR parsing: theory and practice. Cambridge University
Press, Cambridge, UK, 1987.

[3] Charles Donnelly and Richard Stallman. Bison—The YACC-compatible
Parser Generator. Free Software Foundation, Boston, MA, November 1995.
Part of the Bison distribution.

[4] S. C. Johnson. Yacc—yet another compiler compiler. Technical Report 32,
AT&T Bell Laboratories, Murray Hill, NJ, 1975.

[5] Richard Kelsey, William Clinger, and Jonathan Rees. Revised5 report on
the algorithmic language Scheme. Higher-Order and Symbolic Computa-
tion, 11(1):7–105, 1998.

[6] Richard A. Kelsey and Jonathan A. Rees. A tractable Scheme implemen-
tation. Lisp and Symbolic Computation, 7(4):315–335, 1995.

[7] Seppo Sippu and Eljas Soisalon-Soininen. Parsing Theory, volume II
(LR(k) and LL(k) Parsing) of EATCS Monographs on Theoretical Com-
puter Science. Springer-Verlag, Berlin, 1990.

[8] Michael Sperber, William Clinger, R. Kent Dybvig, Matthew Flatt, and
Anton van Straaten. Revised6 Report on the Algorithmic Language
Scheme. http://www.r6rs.org/final/r6rs.pdf, Sep 2007.

9

http://www.r6rs.org/final/r6rs.pdf

[9] Michael Sperber and Peter Thiemann. The essence of LR parsing. In
William Scherlis, editor, Proceedings ACM SIGPLAN Symposium on Par-
tial Evaluation and Semantics-Based Program Manipulation PEPM ’95,
pages 146–155, La Jolla, CA, USA, June 1995. ACM Press.

[10] Michael Sperber and Peter Thiemann. Generation of LR parsers by partial
evaluation. ACM Transactions on Programming Languages and Systems,
22(2):224–264, March 2000.

[11] Reinhard Wilhelm and Dieter Maurer. Compiler Design. Addison-Wesley,
1995.

10

	Introduction
	Prerequisites
	Grammars
	Running a Parser
	Generating a Specialized Parser
	Error Recovery
	Example Session

